Source code for ffc.evaluatedof

# -*- coding: utf-8 -*-

# Copyright (C) 2009-2016 Marie E. Rognes
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Kristian B. Oelgaard 2010-2011
# Modified by Anders Logg 2013
# Modified by Lizao Li 2015, 2016

"""Code generation for evaluate_dof.

This module generates the functions evaluate_dof and evaluate_dofs.
These evaluate the degree of freedom (dof) number i and all degrees of
freedom for an element respectively.

Each dof L is assumed to act on a field f in the following manner:

  L(f) = w_{j, k} f_k(x_j)

where w is a set of weights, j is an index set corresponding to the
number of points involved in the evaluation of the functional, and k
is a multi-index set with rank corresponding to the value rank of the
function f.

For common degrees of freedom such as point evaluations and
directional component evaluations, there is just one point. However,
for various integral moments, the integrals are evaluated using
quadrature. The number of points therefore correspond to the
quadrature points.

The points x_j, weights w_{j, k} and components k are extracted from
FIAT (functional.pt_dict) in the intermediate representation stage.

"""

from collections import OrderedDict
import six

from ffc.cpp import format, remove_unused
from ffc.utils import pick_first
from ufl.permutation import build_component_numbering

__all__ = ["evaluate_dof_and_dofs", "affine_weights"]

# Prefetch formats:
comment = format["comment"]
declare = format["declaration"]
assign = format["assign"]
component = format["component"]
iadd = format["iadd"]
inner = format["inner product"]
add = format["addition"]
multiply = format["multiply"]
J = format["J"]
Jinv = format["inv(J)"]
detJ = format["det(J)"](None)
ret = format["return"]
f_i = format["argument dof num"]
f_values = format["argument values"]
f_double = format["float declaration"]
f_vals = format["dof vals"]
f_result = format["dof result"]
f_y = format["dof physical coordinates"]
f_x = format["coordinate_dofs"]
f_int = format["int declaration"]
f_X = format["dof X"]
f_D = format["dof D"]
f_W = format["dof W"]
f_copy = format["dof copy"]
f_r, f_s = format["free indices"][:2]
f_loop = format["generate loop"]

map_onto_physical = format["map onto physical"]


[docs]def evaluate_dof_and_dofs(ir): "Generate code for evaluate_dof and evaluate_dof." # Generate common code (reqs, cases) = _generate_common_code(ir) # Combine each case with returns for evaluate_dof and switch dof_cases = ["%s\n%s" % (c, ret(r)) for (c, r) in cases] dof_code = reqs + format["switch"](f_i, dof_cases, ret(format["float"](0.0))) # Construct dict with eval code as keys to remove duplicate eval code cases_opt = OrderedDict((case[0], []) for case in cases) for i, (evl, res) in enumerate(cases): cases_opt[evl].append((i, res)) # Combine each case with assignments for evaluate_dofs dofs_code = reqs for evl, results in six.iteritems(cases_opt): dofs_code += evl + "\n" for i, res in results: dofs_code += format["assign"](component(f_values, i), res) + "\n" dofs_code = dofs_code.rstrip("\n") return (dof_code, dofs_code)
def _generate_common_code(ir): # Define necessary geometry information based on the ir reqs = _required_declarations(ir) # Extract variables mappings = ir["mappings"] offsets = ir["physical_offsets"] gdim = ir["geometric_dimension"] tdim = ir["topological_dimension"] # Generate bodies for each degree of freedom cases = [_generate_body(i, dof, mappings[i], gdim, tdim, offsets[i]) for (i, dof) in enumerate(ir["dofs"])] return (reqs, cases) def _required_declarations(ir): """Generate code for declaring required variables and geometry information. """ # Enriched element, no dofs defined if not any(ir["dofs"]): return "" code = [] gdim = ir["geometric_dimension"] tdim = ir["topological_dimension"] # Declare variable for storing the result and physical coordinates code.append(comment("Declare variables for result of evaluation")) code.append(declare(f_double, component(f_vals, ir["physical_value_size"]))) code.append("") code.append(comment("Declare variable for physical coordinates")) code.append(declare(f_double, component(f_y, gdim))) code.append("") # Check whether Jacobians are necessary. needs_inverse_jacobian = any(["contravariant piola" in m for m in ir["mappings"]]) needs_jacobian = any(["covariant piola" in m for m in ir["mappings"]]) # Check if Jacobians are needed if not (needs_jacobian or needs_inverse_jacobian): return "\n".join(code) # Intermediate variable needed for multiple point dofs needs_temporary = any(len(dof) > 1 for dof in ir["dofs"]) if needs_temporary: code.append(declare(f_double, f_result)) # Add sufficient Jacobian information. Note: same criterion for # needing inverse Jacobian as for needing oriented Jacobian code.append(format["compute_jacobian"](tdim, gdim)) if needs_inverse_jacobian: code.append("") code.append(format["compute_jacobian_inverse"](tdim, gdim)) code.append("") code.append(format["orientation"](tdim, gdim)) return "\n".join(code) def _generate_body(i, dof, mapping, gdim, tdim, offset=0, result=f_result): "Generate code for a single dof." # EnrichedElement is handled by having [None, ..., None] dual basis if not dof: return (format["exception"]("evaluate_dof(s) for enriched element " "not implemented."), 0.0) points = list(dof.keys()) # Generate different code if multiple points. (Otherwise ffc # compile time blows up.) if len(points) > 1: code = _generate_multiple_points_body(i, dof, mapping, gdim, tdim, offset, result) return (code, result) # Get weights for mapping reference point to physical x = points[0] w = affine_weights(tdim)(x) # Map point onto physical element: y = F_K(x) code = [] for j in range(gdim): y = inner(w, [component(f_x(), (k * gdim + j,)) for k in range(tdim + 1)]) code.append(assign(component(f_y, j), y)) # Evaluate function at physical point code.append(format["evaluate function"]) # Map function values to the reference element F = _change_variables(mapping, gdim, tdim, offset) # Simple affine functions deserve special case: if len(F) == 1: return ("\n".join(code), multiply([dof[x][0][0], F[0]])) # Flatten multiindices (index_map, _) = build_component_numbering([tdim] * len(dof[x][0][1]), ()) # Take inner product between components and weights value = add([multiply([w, F[index_map[k]]]) for (w, k) in dof[x]]) # Return eval code and value return ("\n".join(code), value) def _generate_multiple_points_body(i, dof, mapping, gdim, tdim, offset=0, result=f_result): "Generate c++ for-loop for multiple points (integral bodies)" code = [assign(result, 0.0)] points = list(dof.keys()) n = len(points) # Get number of tokens per point tokens = [dof[x] for x in points] len_tokens = pick_first([len(t) for t in tokens]) # Declare points points = format["list"]([format["list"](x) for x in points]) code += [declare(f_double, component(f_X(i), [n, tdim]), points)] # Declare components components = [[c[0] for (w, c) in token] for token in tokens] components = format["list"]([format["list"](c) for c in components]) code += [declare(f_int, component(f_D(i), [n, len_tokens]), components)] # Declare weights weights = [[w for (w, c) in token] for token in tokens] weights = format["list"]([format["list"](w) for w in weights]) code += [declare(f_double, component(f_W(i), [n, len_tokens]), weights)] # Declare copy variable: code += [declare(f_double, component(f_copy(i), tdim))] # Add loop over points code += [comment("Loop over points")] # Map the points from the reference onto the physical element # assert(gdim == tdim), \ # "Integral moments not supported for manifolds (yet). Please fix" lines_r = [map_onto_physical[tdim][gdim] % {"i": i, "j": f_r}] # Evaluate function at physical point lines_r.append(comment("Evaluate function at physical point")) lines_r.append(format["evaluate function"]) # Map function values to the reference element lines_r.append(comment("Map function to reference element")) F = _change_variables(mapping, gdim, tdim, offset) lines_r += [assign(component(f_copy(i), k), F_k) for (k, F_k) in enumerate(F)] # Add loop over directional components lines_r.append(comment("Loop over directions")) value = multiply([component(f_copy(i), component(f_D(i), (f_r, f_s))), component(f_W(i), (f_r, f_s))]) # Add value from this point to total result lines_s = [iadd(result, value)] # Generate loop over s and add to r. loop_vars_s = [(f_s, 0, len_tokens)] lines_r += f_loop(lines_s, loop_vars_s) # Generate loop over r and add to code. loop_vars_r = [(f_r, 0, n)] code += f_loop(lines_r, loop_vars_r) code = "\n".join(code) return code def _change_variables(mapping, gdim, tdim, offset): """Generate code for mapping function values according to 'mapping' and offset. The basics of how to map a field from a physical to the reference domain. (For the inverse approach -- see interpolatevertexvalues) Let g be a field defined on a physical domain T with physical coordinates x. Let T_0 be a reference domain with coordinates X. Assume that F: T_0 -> T such that x = F(X) Let J be the Jacobian of F, i.e J = dx/dX and let K denote the inverse of the Jacobian K = J^{-1}. Then we (currently) have the following four types of mappings: 'affine' mapping for g: G(X) = g(x) For vector fields g: 'contravariant piola' mapping for g: G(X) = det(J) K g(x) i.e G_i(X) = det(J) K_ij g_j(x) 'covariant piola' mapping for g: G(X) = J^T g(x) i.e G_i(X) = J^T_ij g(x) = J_ji g_j(x) 'double covariant piola' mapping for g: G(X) = J^T g(x) J i.e. G_il(X) = J_ji g_jk(x) J_kl 'double contravariant piola' mapping for g: G(X) = det(J)^2 K g(x) K^T i.e. G_il(X)=(detJ)^2 K_ij g_jk K_lk """ # meg: Various mappings must be handled both here and in # interpolate_vertex_values. Could this be abstracted out? if mapping == "affine": return [component(f_vals, offset)] elif mapping == "contravariant piola": # Map each component from physical to reference using inverse # contravariant piola values = [] for i in range(tdim): inv_jacobian_row = [Jinv(i, j, tdim, gdim) for j in range(gdim)] components = [component(f_vals, j + offset) for j in range(gdim)] values += [multiply([detJ, inner(inv_jacobian_row, components)])] return values elif mapping == "covariant piola": # Map each component from physical to reference using inverse # covariant piola values = [] for i in range(tdim): jacobian_column = [J(j, i, gdim, tdim) for j in range(gdim)] components = [component(f_vals, j + offset) for j in range(gdim)] values += [inner(jacobian_column, components)] return values elif mapping == "double covariant piola": # physical to reference pullback as a covariant 2-tensor values = [] for i in range(tdim): for l in range(tdim): values += [inner( [inner([J(j, i, gdim, tdim) for j in range(gdim)], [component(f_vals, j * tdim + k + offset) for j in range(gdim)]) for k in range(gdim)], [J(k, l, gdim, tdim) for k in range(gdim)])] return values elif mapping == "double contravariant piola": # physical to reference using double contravariant piola values = [] for i in range(tdim): for l in range(tdim): values += [multiply([detJ, detJ, inner( [inner([Jinv(i, j, gdim, tdim) for j in range(gdim)], [component(f_vals, j * tdim + k + offset) for j in range(gdim)]) for k in range(gdim)], [Jinv(l, k, gdim, tdim) for k in range(gdim)])])] return values else: raise Exception("The mapping (%s) is not allowed" % mapping)
[docs]def affine_weights(dim): "Compute coefficents for mapping from reference to physical element" if dim == 1: return lambda x: (1.0 - x[0], x[0]) elif dim == 2: return lambda x: (1.0 - x[0] - x[1], x[0], x[1]) elif dim == 3: return lambda x: (1.0 - x[0] - x[1] - x[2], x[0], x[1], x[2])